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NOTICE

The results of the OAST Space Technology Workshop which was

held at Madison College, Harrisonburg, Virginia, August 3 -

15, 1975are contained in the following reports:

EXECUTIVE SUMMARY

VOL I DATA PROCESSING AND TRANSFER
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VOL IV POWER
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Copies of these reports may be obtained by contacting:

NASA - LANGLEY RESEARCH CENTER

ATTN: 418/CHARLES I. TYNAN, JR.

HAMPTON, VA. 23665

COMMERCIAL TELEPHONE. 804/827-3666

FEDERAL TELECOMMUNICATIONS SYSTEM: 928-3666
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Introduction

The objective of the Environmental Control and Life Support Systems

(ECLSS) program is to conduct an orderly Research and Technology development

program that will provide matured life support technology for selected future

manned flight program objectives. Technology maturity must be achieved via

an evolutionary pcocess to ensure that condidate concepts are fully and

logically evaluated, and then adequately developed prior to selection of the

final concept for any space opportunity being directed toward a specific

mission application.

As previously noted, the cost of providing expendable items for the life

support function becomes prohibitively expensive as mission duration

increases; therefore, regenerable techniques must be employed. The program

proposed here provides for the research and development of regenerative-class

llfe support breadboard systems for laboratory testing, and the development

and checkout of integrated flight hardware. This study uees, as convenient

focal points, successively ambltlousfuture manned spaceflight opportunities

as s_wn in Figure I. The life support technology required for these

opportunities shows increasing degrees of system closure as the NASA manned

_ space program progresses in the future (see Figure 2).

11teLife Support program, outlined in this study may be divided into

6, two program categories: (I) A sustaining R&D program that is needed to
3

'_" provide the basic and applied research to supply new ideas, approaches and _'o

i concepts, and necessary development of these to show feasibility and optlmum I

-_ application potential; and (2) the specific Life Support Projects responsible

i_ for the further development, testing and integration into flight certified oJ|
• J, i
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prototype hardware. This latter work is necessary to establish, both in

ground tests and flight tests, the correctness and suitability of the system

Each succeeding manned spaceflight opportunity depends on previous

accomplishments, both technical and programmatic. As an example, the final

testing of a Mars Lander ECLSS is seen as belvg accomplished in near-Earth

orbit, and dependent upon an orbiting Space Base. Similarly, the first of

the biological systems, expected to be required for a permanent Lunar

Habitat would first be set up and demonstrated, in a reduced scale, within

a temporary Lunar Colony.

Work in other related areas of llfe sciences needs to be successfully

accomplished in addition to the llfe support and protective systems for

these future missions. This includes other disciplines within the Office

of Life Sciences, such as medical, physical, psychological considerations

and requirements, man-machlne relationships, and social group dynamics.

Advanced space suits and protective systems will play an important part in

the success of these future missions. Advanced EVA capability will be

required in order to provide for contingencies and to enhance man's

capability for deploying and servicing payloads, erecting large structures,

and to minimize space payload costs.

This report has been prepared by NASA personnel whose expertise is

mainly in the area of life support concept and hardware development. There-

fore, this report concentrates on llfe support and crew equipment facets and

not on behavioral sciences and other facets of man's relationship to the

space environment. There are, however, ongoing activities in these areas

as a portion of the overall NASA Life Sciences Program. In fact, studies

are being performed to define specific Spacelab experiments to be flown as

iv
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dedicated Life Sciences payloads in accordance with "the 1973 NASA Payload

Model".

The methodology used in arriving at the results of this workshop study

is shown in Figure 3. Additional factors and limitations to the study

complied by the OAST Workshop Life Support Group are:

i. Life Support functions and supplies obtained from manufacturing

processes or from extraterrestrial raw materlals have not been

considered.

2. Transportation costs necessary to use llfe support equipment in

space either as an experiment or for producing a habitable

environment on-board a spacecraft have been excluded from resource

forecasts.

3. Pollution control for extraterrestrial colonies and habitats has

not been considered as a llfe support system functlott

4. No unforseen breakthroughs in llfe support technology have been

considered to occur during the time period considered in the

technology forecast.

5. Resource forecasts have been made on the basis of 1975 dollars.

For purposes of this report llfe support technology has been subdivided

into two main classes: (1) Physlco-Chemlcal ECLSS Systems; and (2) Biologlcal

Life Support Systems. The various systems are described in the next section

of the report.

Another section discusses a forecast for technical advancements in terms

of projected manned space flight opportunities, including anticipated fllght

experlments.

- ff
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Summary

Life support technology advancements in terms of system closure and
J

regeneration capability were analyzed for a variety of manned space

opprotunities. It has been determined that regeneration capabilities must

be developed in a step-wlse fashion through space flight experiments and

continued SRT supported R&D to meet the succession of increasingly ambitious

space opportunities. In particular, SRT supported development of blological

type life support systems must be implemented for the realization of long

term space goals.

Regeneration and system closure have been shown to be dependent on

mission duration, spacecraft crew size, cost of resupply and spacecraft

power source. The evolution of life support technology must include water

recovery, oxygen recovery, waste management recycle and, ultimately, a man-

made closed ecology with selected biological species before large-scale

permanent space habitation can become possible. A NASA Life Sciences

dedicated regenerative ECLSS experiment has been identified in the workshop

study as a necessary precursor to the flight certification of regenerative

capabilities necessary for a Space Station. Other possible life support

experiments that are needed for other space opportunities have been identified

as.

- Water recovery (vapor compression distillation)

- Water electrolysis (solid polymer electrolyte) .
: - Nitrogen generator

- Crew appliances
- Solid waste management
- Microbiological/plant/aniH1 experiments

vJ
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Basic research needs were identified to be:

- Identify purity standards, methodology and measurement techniques
, for establishing "safe" water

- Identify manned spacecraft air quality standards

- Identify effects spacecrafe, contamination on optical sensing devices

- Identify cleanliness stardards for long duration space mission crewmen

vii
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I. FORWARD

Life support and protective systems, as a technology discipline within

NASA, encompasses (l) the control and revitalization of a habitable

atmosphere; (2) food and water provision; (3) solid and liquid waste

management; (4) space suits and emergency equipment for personnel safety and

rescue; (5) personal hygiene and crew appliance facilities; and (6) special

instrumentation and data management equipment.

The Environmental Control Life Support Systems (ECLSS) used in space-

craft have been relatively simple storage and expendable systems to maintain

life. They have been characterized in the Hearth Committee OFS Study as

"stow and throw systems". Use of stored and expendable items wit_iout any

regeneration has been possible, in most instances, because of the short

duration missions flown in the manned space progrem. Skylab Missions, how-

ever, lasted up to a total of 172 days; and because of the longer duration

misslcns, the Skylab used in a regenerable molecular sieve system to colltrol

metabolically generated carbon dioxide. The Space Shuttle and the Spacelab

are short term missions and will utilize expendable llfe support system

te chnology.

Regenerable llfe support llfe systems, such as the molecular, sieve, are

very important to future forecasted manned space opportunities (beyond the

Shuttle Era) that are characterized by _ission durations from a few months

to a number of years and travel to the far reaches of the geosphere. The

use of expendables rather than regenerable systesum in these alsglons will

become prohibitively expensive in terns of lo$1stlc costs; and even thoush

regenerable systems say be bulkier, weigh more, and consume sore power than

I
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short term expendable systems, the costs of utilizing expendable systems

eventually will exceed those of regenerable systelas (see Figure 4.)

The systematic development of regenerable technology is required to

provide closure of life support systems and tc eliminate expendables for:

carbon dioxide removal; oxygen regeneration; contaminant contro]; water

recycling and reclamation; solid waste collection, transport, and treatment;

trash handling and treatment; personal hygiene; clothes washing; EVA

portable life support systems; and food technology.

The ultimate llfe support system must take the form of those on

spaceship-earth--a closed-cycle biologlcal llfe support and provision system,

wherein plants will recycle carbon dioxide to carbonacious foodstuffs and

oxygen; selected animal species will prodllce protein and liplds; water

• reclamation and waste management will be completed by m4croorganlsms and

ok_er simple life forms, and man will li_e in symbiotic relationship with

other living things as he does on earth. It is conceivable but not proven

that such a man-made closed ecology system, enormously complex as it must be,

is capable of sustaining human llfe for an indefinite time. Closed ecology,

including a diversity of llfe forms (microbiological, plant, and anlmal), is

addressed by the OFS study ss a technlcal objective of space exploration

that contrlbuces to natlonal needs and goals. By developing and acquiring

the knemledge of how to construct a biological ecosystem capable of

supportlngmm independent of earth supplies and resources, we will be able

. to establish a basis of huv man must interact vith urth in order r_ oreserve

and possibly improve our environment and ecosystem. This is cons_.:_.::.,: to

be an extremely important body of knowledge and should add impe_u_ _n

conducting this llfe support research.
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This section of the OAST Space Technology Workshop Report reviews the

recommendations from the Outlook for Space and the prospective on NASA

future space progra_nplanning. A summary of both the technology requirements

for physico-chemical and biological llfe support systems, and the flight

experiment and project development requirements is also made.

3
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II. LIFE SUPPORT SYSTEMS DESCRIPTION

A. Physico-Chemlcal Life Support Systems

All llfe support systems technology in use today, or being actively

investigated for future application falls within the Physlco-chemlcal process

category. This includes chemical absorption (e.g., CO2 absorption by

lithium hydroxlde), chemical adsorption (e.g., trace contaminant removal by

charcoal), electrochemical processes such as electrochemical CO2 removal

and concentration, chemical processes such as CO2 reduction in Sabatier

reactors, water purification by a number of processes such as distillation,

ultrafiltration, reverse osmosis, ion exchange, etc. Physico-chemical

process hardware requires active process controls such as temperature, flow

rate, etc., and are subject to wear, corrosion, being consumed (used up),

and thus, have a finite useful life. The hardware is amendable to routine

maintenance, and unscheduled repair or replacement, provided spares are made

available• Certain elements of these systems such as; valves, fans, pumps,

etc., will have to be utilized in any life support system, including the

biological systems discussed in the following section, and are being given

special attention in so far as reliability, commonality, repair and/or

replacement is concerned.

It is anticipated that these Physico-chemical processes will serve most

future life support needs with the exceptions of permanent Space Bases, Lunar

Habitats, and other mission opportunities that have (1) high resupply costs

! associated with their location, (2) are required to support large numbers of

occupants, and (3) have a useful llfe that is greater than a few years.

Physico-chemical processes can also be utilized to produce nutrients

such as glycerol and ethyl alcohol that can be used as dietary supplements.

4

1977006977-015



The outlook for space forecast has pointed out that synthesized chemicals

could be utilized to supply approximately 30% of a space crew's diet.

Chemical techniques for synthesizing materials such as glycerol have been

demonstrated; but the processes require considerable development before they

are suitable for space use.

As indicated previously, extra-vehlcular activity (EVA) will be

required for all foreseeable manned space missions to provide for

contingencies and to enhance man's capability for deploying and servicing

payloads, erecting large structures, and to minimize space payload costs.

Current EVA capability is represented by the Apollo A-7 suit, used in

conjunction with a portable life support system (PLSS) or umbilical llfe

support system. This suit is operated at 3.7 psia and has seen service on

both the lunar surface and (with modifications) aboard Skylab.

B. Biological Life Support Systems

Biological life support systems are considered to be those microbiological,

plant, and animal systems which provide life support functions and/or food

production. Previous NASA sponsored, R&D activity has been limited to

investigations with unicellular systems (algae, hydrogenemonas eutropha, etc.)

and intensive agriculture units for selected vegetables. A closed ecological

system is envisioned as a "farm" concept including numerous physico-chemical

processes. For example, a solid waste treatment system (incineration) may

be required to control fecal bacteria, and chemical synthesis of nutrient

supplements may be desirable or needed.

5
|
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III. TECHNOLOGY FORECASTS AND PROJECT OPPORTUNITIES

Figure 5 shows forecasted life support technology in terms of relative

• resource requirements for the manned spaceflight opportunities illustrated

in Figure 3. Both SRT (supporting research and technology) and project

resources are indicated. The SRT resources, which provide for various

development programs, (to demonstrate feasibility, indicate application

potential and improve performance of new or existing concepts and designs)

is divided into physico-chemical and biological systems. Forecasted

project resources are keyed to the opportunities in Figure 3 by the numerical

designators in the project resource areas.

The various resource areas indicate relative levels of effort for (i)

research and development, and (2) flight certification necessary to provide

reliable llfe support systems for each of the identified space opportunities

from Figure 3. Resources are chiefly influenced by the complexity, size,

degree of regeneration (closure) and reliability of the required llfe support

system. Each successive space opportunity presents a unique combination of

the influencing factors and represents a discrete set of requirements to

impact llfe support system design. Therefore, although actual resources may

differ from the forecast, the ratio of the attendant resources between each

of the eight representative life support systems should not change

significantly.

A gradual rise in biological system development resources is expected

. and reflects the difficulty of the problem: the anticipated increase in the

numbers and complexity of anlmal/plant species; the complexity of anlmal/plant

6
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micro-organism interactions; nad the associated experimentation. Physico-

chemical system development, unlike biological development, has been taking

place for a number of years, resulting in relatively well understood

technologies for ECLSS having oxygen and water closure. Significant

increases in physico-chemical SRT resources are not expected.

The L-5 habitat experiment will require the largest amount of project

resources because of its inherent complexity.

A. Development Activities

Physico-Chemical Life Support Systems

Figure 5 shows a relatively consistent level of effort projected into

the future for Supporting Research and Technology for physico-chemical life

support systems. This effort provides a sustaining technology development

program to support new concept initiation, development and testing,

improvement of existing _r established concepts and subsystem and sytem-

: level tests to verify performance and operation. The technology development

that is envisioned to meet the goals of future space opportunities is

! dependent upon the sustaining SRT programs to provide the technology base

and to develop reliable l'fe support processes derived from the technology

base. Specific endeaw cs (currently underway) in this program are atmosphere

revitalization anJ control processes, water-waste management processes,

subsystem instrumentation, control, and interface requirements, food

provisions and food service _quipment (including basic research into •

chemical food synthesis processes), and system integration studies and tests.

: Development activity is underway for a 4.0 psia suit to support Shuttle

EVA. This suit, designated as an extravehicular mobility unit (EHU), will

I
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provide improvements in suit performance and useful life and is expected to

cost somewhat less than the Apollo suit. Technology improvements to be

incorporated into the EMU are: integrated suit-backpack configuration,

self-donning and doffing, improved arm and glove mobility, longer shelf and

service life, less expensive manufacturing processes, modular sizing and

replacement capability, and simple servicing needs.

Advances is space suit design and associated portable life support

systems (PLSS) for future use will involve incorporation of higher suit

pressure capability, up to 8 psia. This is important because future space-

craft (including Shuttle) are expected to use 14.7 psia atmospheres, and

the transition from the cabin (14.7 psia) to EVA suits (8 psia) can be

accomplished without prebreathing. (Prebreathing for 2 1/2-3) hours is

necessary when transitioning from 14.7 to 4 psia in order to avoid nitrogen

bubble formation within the body.) Other expected advances are: faster suit

donning and checkout for quick-response EVA capability; greater whole-suit

mobility; reduced bearing leakage; reduced expendable inventories through

use of regenerable CO2 scrubbing and thermal sinks; and increased radiation/

meteorite protection for geosynchronous and deep space EVA.

Ultimately, a 14.7 psia, two-gas (oxygen and nitrogen) atmosphere sui_

and life support assembly may be both necessary and beneficial• A two-gas

atmosphere will be needed to eliminate frequent (perhaps daily) exposure to

8 psia pure oxygen for periods up to 8 hours, which may present a toxic

, hazard.

Biological Life Support systems

Previous "closed" life support s_udies and development activities have

8
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concentrated on either chemical food synthesis or unicellular biological

systems. The life sciences con_unity in NASA is currently planning for

various plant and animal experiments to be flown on Spacelab. The flight

duration is very short in comparison to plant and animal life cycles and

the information of the effects of zero-g will be limited. Very little

ground-based biological life support system work is being conducted at this

time. It has been pointed out previously that the ultimate development of

a closed ecological life support system, involving a significant number of

biological species, will require substantial resource commitments on the

part of NASA. In order to be successful, this program will also require

50-75 years of planned and orderly research and development.

Initially, a knowledgeable team of experts in related technology areas

(biochemistry, ecology, plant physiology, animal husbandry, nutrition,

organic chemist_, microbiology, etc.) must be organized as a team to review

closed llfe support system requirements and to model such a system. NASA

does not currently possess such expertise. This effort and follow on

iterations would require approximately two years and would result in

recommendations for future R&D. The RbD would be initiated with individual

plant and animal investigations; and, as indivldual systems are developed,

increasingly complex integration studies and tests must be performed. The

ground-based SRT efforts must be closely coordinated and must also be

coordinated with flight experiment findings to insure ultimate success.

b

B. Project Opport'_nitles

The next section of this report will outline the major anticipated space

activities that NASA will undertake in future years. Each of these activities,

9
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such as Space Stations, Lunar Colonies, and Manned Mars Missions is discussed

in terms of the anticipated life support requirements. Also discussed are

• the relationships that exist between experiment opportunities occurring

with each of the space activities, and how these experiments provide a
g

technology base for improvements in life support systems on subsequent

missions.

Regenerative Environmental Control Life Support System Experiment

A significant amount of research and development has been conducted by

NASA on regenerative life support processes, and some intermediate-duration

earth-based system and subsystem tests have been performed. However, usage

and acceptance of regenerative techniques and advanced llfe support processes

• in the manned space program depend upon the certification of a reliable cost-

effective regenerative ECLLS. The effects of weightlessness on the

performance of an ECLSS and the associated man-machlne relationships cannot

be adequately defined with earth-based tests or aircraft zero-g simulation.

A space flight experiment is required• A 30-day Life Sciences dedicated

payload, planned for a 1983 launch, has been identified as an early Shuttle

c_ndldate payload and offers the only logical opportunity for a timely ECLSS

fllght test. In order that the regenerative ECLSS experiment can be

developed for a 1983 launch date with a minimum expenditure of funds, a

_elopment program has already been initiated• The program will be

. conducted in t_o phases.

Phase I--Preprototype development (1975-1979) will contain the following

tasks:

I. Define the ECLSS and Spacelab/experlment interfaces and

10
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prepare a tentative preliminary design.

2. Design and fabricate independent ELCSS subsystems towards

meeting Spacelab interfaces.

3. Perform ground-based testing with integrated groupings of
r

ECLSS subsystems.

Phase II--Prototype development and flight hardware (1979-1982) will

contain the follo_rlns tasks:

1. Design and fabricate an ECLSS to fit Spacelab.

2. Evaluate the integrated ECLSS both with unmanned and manned

tests.

3. Construct and install a set of flight hardware (duplicate) or

prototype.

The ECLSS experiment will provide llfe support for Spacelab payload crew

(2 to 3 men). The vehlcle ECLSS w111 back up the ECLSS experiment as required.

Crew support for the ECLSS experiment wlll be planned on a noninterference

basis to integrate with other Life Sciences experiments in accordance with

protocol adopted for the mission. A schematic diagram of the proposed

regenerative ECLSS experiment Is shown in Figure 6.

The ECLSS experiment will use proven regenerative technology advance-

ments from ongoing developments within the NASA Life Sciences program. The

functional elements of the ECLSS experiment are:

1. CO Rmoval--ElecCrochemical concentrator to remove carbon
2

dioxide from cabin air.

2. CO Reduction--Sabatier reactor to reduce CO with H to form
'_ 2 2 2 .,

water.

3. Oxygen Ceneretion--Soltd polymer electrolysis unit to produce ',

i
1

i
I
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-, hydrogen and oxygen from water.

4. Pressure Control--Oxygen and diluent (nitrogen) adjustment

to maintain a vlable cabin atmosphere.

' 5. Contaminant Removal--Catalytlc oxidation and chemical

absorption to convert cabin air contaminants primrily to water

vapor and carbon dioxide.

6. Urine Procegsor--Vapor compression dlstillation and

electrochemical iodination to treat urine and recover,

sterilize, and store potable water.

In addition to this baseline ECLSS experiment, other internal self-

contained experiments will be attempted in the same payload if there is

adequate space and power. The proposed self-contalned experiments are:

i. Air Revitalization--Unitized control of water vapor (humidity)

and CO to supply oxygen.
2

2. Wash Water Reclamation--Hyperfiltration through membranes to recover

potable water from waste wash water.

Other features of the experiment include:

l. A maintenance demonstration to examine the problem of performing

in-flight component _ _moval and replacement.

2. The use of common components to the greatest extent possible to

reduce development costs and demonstrate commonality, particularly,

common instrtmentation.

_, 3. The use of automatic fault detection and isolation techniques to

i assist maintenance/repair tasks and system operation monitoring.

i These features will probably be demonstrated on selected subsystems to save ,
costs rather than on the complete ECLSS. Thus, these gestures must be expanded

l '
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and upgraded in order that the ECLSS for a space station will perform in

an optimum manner. In addition, the ECLSS experiment will provide flight

certified water and oxygen recycle technologies, and trace contaminant

control technology needed for space stations and other space opportunities

which will require physlco-che_ical ECLSS.

This regenerative ECLSS experiment will produce information of

performance and control dynamics, including mterlals balances and liquld/gas

separation. Also, man-machlne interfaces and relationships will be

evaluated. Most importantly, information will be obtained to verify

integration design, including unlt-to-unlt and system-to-vehlcle interfaces.

Future application of regeneratlve-class ECLSS will rely heavily upon this

information. No blologlcal llfe support technology is planned for this

experiment.

Experlments: Autonomous Spacelab experiments to evaluace the vapor compression

distillation and solid polymer electrolysis units are being developed through

the preprototype stage. The performznce of these units is more sensitive

to a welghtless environment than other ECLSS components and units; therefore,

a precursor Spacelab flight experiment may be warranted.

Small Space Station

A small Space Station is foreseen as a forerunner to a larger Space

Station and future space opportunities. A crew of 3 to 6 men is proposed for

the station which will probably be flown in a low earth orbit and resupplled

periodically by the Shuttle. The llfe support system of the small Space

Station will be similar to and will depend on the technology demonstrated

in the Regenerative ECLSS experiment. Closure of the oxygen loop (as

/

13
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demonstrated in the flight experiment), however, will depend upon the pover

source used and power demands of the Space Station. (Regeneration of oxygen

" is feasible when power sources other than hydrogen-oxygen fuel cells are

used, but over 700 watt-hours per man-day are necessary in the oxygen

regeneration process.)

Regenerative CO2 removal and water reclamation subsystems will be

incorporated into this ECLSS, as baseline subsystems. It is expected that

much of the necessary design and integration activities and the development

of specialized life support instrumentation and information management

items for this ECLSS will be derived from the regenerative environmental

control life support system experiment (RECLSSE). Furthermore, on-line

maintenance requirements, common components, and spares inventories must be

incorporated into the Space Station and its resupply cycle.

Experiments: The small station rill provide the opportunity to conduct a

variety of experiments leading to improved life support functions and

additional system closure. Based on the technology demonstration

accomplished with the RECLSSE, oxygen reclamation experiments Nay be

conducted, leading to the establishment of this technology as a baseline

system for the large Space Station.

Large Spa,_e Station

It is expected that at least twelve persons will occupy the large

• Space Station, and that the resupply period will be increased relative to

that of the small Space Station.

• These mission objectives dictate an ECLSS with a greater capacity,

larger spares inventory, improved fault detection systems, and greater system

14
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closure than previous _y _lown. The life support processes ,.t..... are

envisioned for the lar_:_ Space Station will probably _nc]: _. _he closure

of the oxygen cycle, which, _lith the reclamatlon of water =_'_a llquld

wastes, will materially reduce the need for rc_uppl:. 4: = q,_dables.

Technology for upgrading the ECLSS in thi_ _tter _i[ _e obtained from

flight certification experJments conducted on the s_all Space Station and

Spacelab.

Since the large Space Station will probably be used to study and

evaluate the assembly of large structures in space, extended EVA capabillty

will be necessary. An E_U with regenerative capabllltles should be used to

reduce expendable provisions such as Lithium Hydroxide for CO2 removal.

Experiments: The large Space Station will also provide an opportunity to

extend waste management technology by testing waste management-reclsmatlon

techniques such as the waste incineration or wet oxidation units. These

expeslments w111 reduce storage volume needed for wastes, and will also

provide addlt!orml wate_ and oxygen for llfe support system closure. In

addition, nitrogen generation experiments will be conducted to provide

source of this diluent gas from liquid storage (ammonia or hydrazlne). Small

blologlcal experiments, and plant growth studies will also be conducted, and

may provide some modest vegetable additions to the food supply.

Syace Base

Utillzatlon of space for purposes of product manufacture, earth-beamed

power seneratlon and other practlcal sppllcatlons will be made possible with

4

the Space Base. Various specialists and a cadre of workers will inhabit Space

Base which may be assembled in a geosynchronous orbit with materlals ferried

15
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from earth. Also, raw materials and manufactured products will be

frequently shuttled between earth and the Space Base.

Because of the frequent Shuttle fllghts, a large store of life

support system spare components may not be necessary. Instead, spares may

be supplied from earth as needed to replace failed components in redundant

type ECLSS modules that will operate at increased capacity =o compensate "_"

for failed systems. A major advance in the Space Base ECLSS is closure of

the water/waste management system. Closure of this system reduces the

amount of stored waste, which ultimately must be removed from the Space Base,

and increases availabillty of water supplies and other usable commodities,

e.g., carbon dioxide.

The EVA requirement_ ior Space Base will be greatest during original

erection and assembly of the base. If solar power seneratiot,, or other large

structures are to be constructed using the Space Base as an operational

platform for these activities, EVA will again be necessary.

Experiments: Experiments in support of future life support capability w4_

be conducted on _oard the Space Base. Both biological and physieo-chemtcs]

food production will be investigated. In addition, the Mars Lander ECLSS may

be tested under realistic conditions to insure reliable, unsupported life

support functions before co_dtment to the Mars Plight.

Lunar Colony

The establishment of a 6-12 man Lunar Colony will provide the basis

for the eventual establishment of a permnnent Lunar Habitat. Occupancy by a

crew of 6-12 people, with crew exchange and resupply occurring periodically

with a lunar lander, will allow a tmeful colony life o" several years.

16
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It is expected that closure of the oxygen cycle and water cycles will

be incorporated into the llfe support system, however complete waste

management recycling may not be cost effective. Maintainability and spares

inventory management should be emphasized in this ECLSS because of the

increased logistic cost of the Lunar Colony compared with earth orbit logistic

costs.

Experiments: An excellent opportunity exists within the Lunar Colony for the

performance of biological experiments. Planning for this goal is required,

so that either filtered sunlight, or artlflclal llght is available.

Experiments to determine the suitability of lunar soil for plants should be

conducted in preparation for extensive biological food growth and biological

llfe support system experiments in a subsequent Lunar Habitat.

In addition, experiments to determine the extent to which useful

commodities for llfe support can be derived from available lunar materials

will be of considerable interest, and may well affect the requirements for

life support systems used on the moon.

Lunar Habitat

At some point, subsequent to the establishment and use of a Lunar Colony,

a permanent Lunar Habitat will be established. Personnel compliment of such

a habitat is difficult to predict; however, eventually as many as 200-300

oct ,ants would seem reasonable. Other assumptions which impact llfe support

system configurations, and particularly the degree of system closure, is the

relative cost of power (primarily electrical) in terms of $/kw.hr on the lunar

surface, vs. $/kg of supplies delivered to the lunar surface.

17
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With these drivers in mind, a closed life support system with the

exception of food generation is expected to be optimal for the Lunar Habitat

considering the logistic cost of oxygen and water resupply. System closure

will include waste management recycling to reduce waste disposal and further
i

reduce logistic requirements.

Experiments: The Lunar Habitat will provide an ideal setting for the

development of both physico-chemical and biologlcal food production. The

1/6 gravity of the moon will aid in these efforts, especially in the problems

of liquid-gas phase separation. The resulting technology developments will

not be directly applicable to other future space programs unless similar g

levels are used. However, the eventual closure of the food cycle will depend

heavily on the knowledge gained in the Lunar Habitat, and this capability, as

it is developed, will reduce, and perhaps eventually eliminate logistic

resupply of food to the Lunar Habitat.

Manned Mars Lander

Manned missions to the planet Mars, including both flyby and/or landing,

present unique problems for the life support system. Such a system must have

attributes which tend to be mutually exclusive: a light-weight, low power

system that minimizes expendables (i.e., regenerative in function) and

exhibits very high reliability for a relatively long duration mission

. (300-500 days).

The need for light-weight, low power life support systems needs no

explanation. Minimization of expendables to achieve low weight dictates

regenerable systems which, by their very nature, are more complex than
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expendable systems (e.g., water reclamation vs. stored water). The achieve-

ment of very high reliability is essential on a Mars mission because no

mission abort or rescue can be performed once the spacecraft is in an orbit

to Mars. A key to the solution of this problem is maintainability, but this

alone will not provide easy solutions. Extensive development and test

programs must be carried out to insure not only mission success, but to "_

preserve and protect the lives of the crew.

It is strongly recommended that a manned Mars spacecraft, with all

onboard systems functional, be manned in earth orblt, perhaps in the _mmediate

vicinity of the Space Base, or other manned orbital spacecraft, for at least

an equal time period, prior to embarking on an actual Mars Mission.

Life support system concepts that will fit the needs of a Mars mission

are closed physico-chemlcal processes for atmosphere revitall _tion and water-

waste management. Stored, freeze-dehydrated food, reconstituted with

reclaimed water will provide minimum food weight penalties (about 0.5 pound

per man-day). Since oxygen reclamation will probably prove to be superior to

stored oxygen systems (about 2 pounds per man-day) considerable electrical

power will be needed to produce oxygen from metabolically produced carbon

dioxide and water (several hundred watt-hours per man-day).

No life support-orlented experiments are expected to be conducted

onboard this mission.

L-5 Pro tptype Experiment

This biological system flight demonstration is planned as an experiment

v

to be performed on the Space Base which would have a primary physico-chemlcal

llfe support system closed for atmosphere revitalization and water.
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This biological system may not be a completely balanced system or

support significant manpower complement, but it should ultimately contain all

significant biological species necessary to demonstrate balanced system

operation and address all the critical interface problems (microbiological/

plant/animal/physico-chemical) that are pertinent to a closed ecological

system for an L-5 colony (e.e., water balance, oxygen balance, waste

recycling--animal and plant waste conversion to plant nutrients, etc.). The

primary physico-chemical life support system or its individual subsystems'

will be utilized in a back-up mode or in a complementary mode with the

biological system, and provide the primary life support capability that will

insure habitability of the Base and allow for conducting the biological system

tests.

The complexity of an L-5 experiment remains to be defined, Just as the

complexity of a space colony must be defined (a Stanford/Ames/ASEE summer

workshop is currently conceptualizing a design for an L-5 colony).

2O
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LIFE SUPPORT TECHNOLOGY

CODE

LS-I 1975 NASA OAST Summer Workshop Overview Report

LS-2 Final Draft--A Forecast of Space Technology 1980-2000 Outlook for

Space: Reference Volume, National Aeronautics and Space

Adminlstration, July 15, 1975

LS-3 Internal NASA Review Draft Report of the Outlook for Space Study,

National Aeronautics and Space Administration- July 1975

LS-4 Internal NASA Review Draft Outlook for Space, Executive Summary,

National Aeronautics and Space Administration, July 1975

LS-5 The 1973 Payload Model Space Opportunities 1973-1991, June 1973

LS-6 Final Report, Space Shuttle Payload Planning Wurking Group--Life

Sciences, May 1973

; LS-7 Annual Reports

The Development and Testing of an Intensive Agricultural System for

Space Application. Western Regional Research Laboratory, U.S° Department

of Agriculture, Agricultural Research Service, Berkley, California

94710, NASA Contract No. A474-29A, March 1971--March 1972--March 1973

LS-8 NASA SP-134, The Closed Life-Support System, National Aeronautics and

Space Administration, Ames Research Center, Moffett Field, California,

Apzil 14-15, 1966

LS-9 Moonlab, A Study By Stanford-Ames Summer Faculty Workshop in

Engineering Systems Design, June 29-Sept. 6, 1968
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LS-IO NASA Project Approval Document Research and Development Integrated

Life Sciences, ILS 1975, April 23, 1975

LS-11 Alternate Mission Studies, _AILSS), Hamilton Stardard Division of

United Aircraft Corporation, Windsor Locks, Connecticut, July 1969,
i

NASA CR-66876

LS-12 Final Report, Study of Space Shuttle Environmental Control and Life

Support Problems, by K.P. Dibble, F.E. Riley, et al, prepared under

Contract No. NASI-I0478 by Lockheed Missiles & Space Company,

Sunnyvale, California, for NASA Langley Research Center, NASA

CR-II1978, November ii, 1971

LS-13 Final Report, Space Shuttle Environmental Control/Life Support Systems,

Hamilton Standard Division of United Aircraft Corporation, Windsor

Locks, Connecticut, Contract No. NASI-I0359, September 2, 1971

LS-14 Trade-off Study and Conceptual Designs of Regenerative Advanced

Integrated Life Support Systems (AILSS), United Aircraft Corporation,

Windsor Locks, Connecticut, for Langley Research Center, NASA

CR-1485, January 1970

LS-15 Preliminary Edition of Reference Earth Orbital Research and

Applications Investigations, (Blue Book), Volume VIII--Life Sciences,

NASA, NHB 7150.1, January 15, 1971

LS-16 Environmental Control and Life Support Systems Development for Manned

Spacecraft 1960-1973, D.C. Popma, Manager, Integrated Life Support

. Systems, NASA Headquarters, Washington, D.C. 20546, Llfe Support

Systems and Equipment Session at the XXIV International Astronautical

Congress held at Baku, USSR in October 1973

LS-17 Final Report, Definition Study for an Extended Manned Test of a

Regenerative Life Support System, November 1971, prepared under
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Contract No. NASI-10790, by the Biotechnology and Power Department,

Advanced Systems and Technology, McDonnel Douglas Astronautics

Company, Huntington Beach, California Langley Research Center,

NASA CR-I12000, MDC G-2624.
q

LS-18 Preliminary Test Plan, Definition Study of an Extended Manned Test

of a Regenerative Life Support System, November 1971, prepared under

Contract No. NASI-I0790, NASA CR-ii1999, MDC G-2625

LS-19 Test Report, Test Results, Operational Ninety-Day Manned Test of a

Regenerative Life Support System, May 1971, prepared under Con;tact

No. NASI-8997, NASA CR-II1888, MDC G-2282

LS-20 Preliminary Results from an Operational 90-Day Manned Test of a

Regenerative Life Support System, A Sympositnn held atLangley

Research Center, November 17-18, 1970, NASA SP-261

LS-21 Study to Evaluate the Effect of Extra Vehicular Activity on Payload

Systems, NAS2-8429, Mid-term report, November 25, 1974, SA-0172

23

i
I

1977006977-034



8318VON_dX] klddn8]_
Sglilll£n ONIOnlONI 'J.HDI:IM NglSAS

24

1977006977-035
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25

I

1977006977-036



(#) o
m

Z(#)

A I..I.I.,.i I

, .j c_o o I
ti,J -t" _l

"M :i:' I

I-Z I,- Z Z

--JE Z )P OU :_0

--X m Z_:_: ,,>,,,, I__1 _1 I -. lo I
,,, 2___ L_i#, L_I

r "1 , .T,r-ar-ii _ ' I _ -_.L.

' ° "1 " l:ii0 I l.u 0
I _lz: i...I ... Z -!- i,u
i _Z on- • _in iX:"'

I (.i _ i _. o=

_ ,-o,. .. _.....______ _
z LL_L--JJ r--__-----II I_ "r'l

..zl. I ,Z l/i, I
= .___I i_ r-_-_I

_<_i , , _i,
_"_ I r.-'l , Im_"-_l I

. LU,,.L________J

t

1977006977-037



27
t

1977006977-038



! I

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 1
i i •

I. TECHNOI,OGY REQUIREMENT (TITI,E): Demonstration of PAGE I OF3

Regeneratlve-Class ECLSS Technology

"2.TECIIN()I,()GYCATEGOI{Y: N-7-1

;;. OBJECTIVE/ADVANCEMENT REQUIRED: Regenerative ECLSS technology

demo_stration is required to preclude excessive long term mission spacecraft

penalties incurred by open-loop ECLSS.

t. CUI{RENT STATE OF ART: Basically, only non-regenerative (open-loop)

systems have.been demonstrated in zero eravitv.
HAS BEEN CARRIED TO LEVEL 5

5. DESCRII'T[()N ()l."TECIINOI,OGY

Current state-of-the-art systems utilize expendables to satisfy daily crew
requirements resulting from metabolic processes such as oxygen consumption
(2.6 lbs) water consumption (10 _bs.) and caxbon dioxide generation
(3.0 lbs). The weight to satisfy these particular requirements becomes
prohibitive for long-term space flights as illustrated below for 6-man/6-
month mission:

Current ECLSS Re_enerative ECLSS
(Shuttle-Type) (Space Station Type)

8.4 Tons (Expendables Only) 3060 lbs. (Process Hardware plus
Expendables)

P/LREQUIRFMENTSBASEDON: [_] PRE-A,[_ A,_ B,_] C/D

6. I{ATI()NAI,I" AND ANAI,YSIS:

Nost critical parameters for any ECLSS are man-days of the mission and
resupply intervals for expendables. There are other key parameters that are

man-related but not as critical: CO2 partial pressure and crew water use

allocations. Other parameters are vehicle-related such as type of electric
power source (for example, fuel cells produce water, solar arrays don't and
gas storage method (high pressure, cryogenic, none). All long-term manned
missions, such as space station, lunar base, space power satellites, etc.
benefit from regenerative-class ECLSS. Current state-of-the-art (open-loop)

severely limit mission duration becav ,e of prohibitive H20 and 02 requirement

Operate a demonstration model in space environment through various modes
including steady state, transient, long-term, starts, stops. Additional
ground-based tests to:

1. Uprate to final crew size

2. Improve reliability (by improving maint, designs)
3. Upgrade to keep pace with data management requirements
4. Incorporate advancements in weight, power volume

i TO BE CARRIED TO LEVEL 7
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DEFINITION OF TECHNOLOGY REQUIREMENT NO. 1
t i i i ii

1. TECHNOLOGY REQUIREMENT(TITLE): Dc_onstration of PAGE 2 OF 3

.._ Regenerative-Class ECL..SS Technology ,.

7. TECHNOLOGY OPTIONS:

Continued use of oper ECLSS technology imposes enormous penalties for long
duration flight. (Skylab, typical of open loop and Ions duration, carried
12000 ibs. of water for example). This technology is well understood but
extremely large and heavy. Regenerative systems are next on the spectrum
and are the object of the technology requirement. Further advancements are

_- in early stages of development which offer improvements in closure of the
system and in weight, power and volume penalties. These concepts are
presently immature.

|

_. TECHNICAL PROBLEMS:

Optimum system integration of subsyste_m for high performance. Also,
integration with the spacecraft. The basic technical design problem
faced by the reg_nerative ECLSS is the ability to function efficiently
in a zero gravity environment. (Liquid/vapor phase separation).

9. POTENTIAl./,LTERNATIVES:

The regenerative ECLSS technology described is fund_ental to long term
manned mission unless massive spacecraft and boosters are developed, in
which case, open loop ECLSS designs might suffice.

' '| ' _ ' I f

10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:

Engineering models being teated. Preprototype models being developed.
Prototype and fllght articles (duplicate of prototype) is the next step
anticipatud.

EXPECTED UNPERTURBED LEVEL $
ira, i •

II. RELATED TECHNOLOGY REQUIREMENTS:

None defined.
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DEFINITION OF TECHNOI,OGY RE(_UIREMENT NO.

l. TECIIN()I.OGY REQUIREMENT (TITLE): Demonstration of PAGE 3 OF _

12. TECItN()I,O(;Y REQUII{EMENTS SCIIEDU1,E:

CALENDAR YEAR
|J ii

• SCIIEDUI.E ITEM 75 76 77 78 79 80 81 82 83 8-t _5 86187185 89 90[91

TE CIINOLOGY
1. Engineering Breadboard

Tests

2. Experiment definition
ann Preliminary design

3. Preprotype tests

4.

5.

!APPLICATION

!. Design (Ph. C)

2. Devl/Fab (Ph. D)

:3. Operations

4.
, i

13. USAGE SCItEI)UI,E:
• i

TECllNOI.OGY NEED DATF. ,_, TOTALL
I

NUMBER OF I._UNCHES l 1 I I

I-1. REFERENCES:

p

15. LE VEL OF STATE OF ART ,. t_,,_,_r._T on Mr_,w _s:LD t,__LEVA_T
EICVHCO_M[RT IN T't_. t.AI_ORAI_.,RY.

I. IIA-_IC I_E'_O.M_._A O_t'RVb D AND qFI'C)RTED. 6. MOI_E.L TL_*.ED IN AIRCKA)T LN_RONM_ NT.

|. TIII:OKY )OII._!t'I.ATED 10 DJ'%(I':l_" PIi! hOMENA. T. MOD£L "IrES'rLD IN SP.%('l" [._:VIRON._tENr.

$. T'dFi,K', -r) NTEI) U_J PIIh'_WAL I'%PLR|MLNT |. J/[W CAPAIIII,ITY PLJAI_.%'DFgO?.! A MUCJl LIE._R
OR M_kl JiJ:M_TI(" %t. Mt_Di I,. OP[AAI'Jo_,k L MODL L.

4. PtH'I'IN_.%r )L'NL'T_*)N OI¢('ILAItACTI:KtS'TI(" DP'MO_/STRATED, f), P.ELAAJlOLITY UPc;RAII4t_COF _OPE_ArI,,_ALMODLL
F..G.. MATkI(L_L, /'t,_'po',) *_T, E_.c '. 10. IJFETIM[ LXTE_ION OF AN Ol LKATION _;. MOD) I,.

iii|
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REQUIREMENT FOR BASIC RESEARCH

* CONCEPT

(MISSION�TECHNOLOGY�INSTRUMENT/SENSOR/SYSTEM) Water Quality Standards. "_"

Water provision systems in present and future spacecraft furnish

both hot and cold water for human consumption (drinking, food preparation)

and for personal cleaning. Additional consideration of purity standards

is needed to insure crew safety and wellbelng.

* WHAT CAN YOU TELL US QUANTITATIVELY ABOUT THIS PROBLEM?

At the present time only limited standards (provided by the National

Academy of Sciences, etc) are available, setting forth allowable limits of

chemical and biological contaminants. Additional consideration of maximum
allowable concentration of contaminants and for other constraints (e.g.,

turbidity, ph. etc) is needed to establlsh additional guidance and testing
of such water provision systems and the associated blocidal treatment of

the processed water.

* BASIC RESEARCH REQUIRED:

Identify purity standards, methodology and measurement technique for

establishing "safe" water.

* WORKING GROUP MEMBER TO BE CONTACTED FOR FURTHER DISCUSSION :

D.C. Popma, NASA Hg. Code l4_V
R.J. Gillen, NASA J.S.C. EC-3 (non working group member)
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REQUIREMENT FOR BASIC RESEARCH

* CONCEPT: "_"

(MISSION/TECHNOLOGY/INSTRUMENT/SENSOR/SYSTEM)

Improved air quality standards must be established for contaminant
control.

* WHAT CAN YOU TELL US QUANTITATIVELY ABOUT THIS PROBLEM?

In past, manned spacecraft have had a relatively clean cabin
environment due to control of cabin structural materials. With the advent

of AI4.78SIA cabin pressure, mat'Is control will be relaxed and new

potential co_tamlnants may result. So more comprehensive std's are red'd.
for design and performance testing of contaminant control systems.

* BASIC RESEARCH REQUIRED:

Identify Manned Spacecraft Air Quality Standards

* WORKING GROU. I_MBER TO BE CONTACTED FOR FURTHER DISCUSSION:

NASA AMES MAIL CODE 239-4 415-965-5733

Dr. W. Rippstein NASA JSC

R.J. Gillen NASA JSC EC3 713-483-5536 Not working group
members
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REQUIREMENT FOR BASIC RESEARCH

* CONCEPT:

(MISSION/TECHNOLOGY/INSTRUMENT/SENSOR/SYSTEM) EXTRAVEHICULAR CONTAMINATION
RESTRICTIONS AND IMPACT ON OPTICAL SENSORS.

Spacecraft leakage, EMU leakage and EMU thermal control (water

vapor) as well as spacecraft ECS venting will allow contaminants to be

released in the vicinity of the shuttle, with potential detrimental effect

on optical sensor systems. There is a need to quantify these detrimental

effects (if any) to preclude data loss or error, and at the same time, not

restrict EVA operations, and other spacecraft operations unduly.

* WHAT CAN YOU TELL US QUANTITATIVELY ABOUT THIS PROBLEM?

Consideration should be given to the following:

-sensor protection or configuration changes

-modification of vent locations or time sequencing

-decay rates of contaminants with time

-potential for contamination by various vapors and gases (e.g.,
water, CO, etc.)

-synergistic effects of mixed contaminants

* BASIC RESEARCH REQUIRED:

TBD.

* WORKING GROUP MEMBER TO BE CONTACTED FOR FURTHER DISCUSSION:

D.C. Popma, NASA Hg. Code MMV

P.O. Quattrone NASA ARC.
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REQUIREMENT FOR BASIC RESEARCH

* CONCEPT:

(MISSION/TECHNOLOGY/INSTRUMENT/SENSOR/SYSTEM)

There is a need, for duration manned missions, to perform whole

body bathing and clothes laundering. The degree of cleanliness required

in this circumstance is not known, but will impact the design of equipment

required to perform the cleansing functions. In addition, water usage
must be as low as possible and soaps must be compatible with cleanliness

requirements as well as the personel hygiene equipment, water processors,
and the crewmen.

* WHAT CAN YOU TELL US QUANTITATIVELY ABOUT THIS PROBLEM?

, Virtually no attempt has been made to qualify acceptable persenal
cleanliness in terms of comfort or lack of micro flora on the skin.

Prototype washer/dryers, designed on the basis of using soap and water as

the cleaning agents, have a 25 to i ratio of required water weight to

clothing load. Available soap formulation considered acceptable for personal

hygiene is space have been tested with reverse osmosis water processors;
evoked in skin patch tests and a soap, miranol, was used in Skylab but was

not liked in terms of odor and comfort. No currently available soap or

cleansing agent is completely acceptable.

* BASIC RESEARCH REQUIRED:

Identify cleanliness requirements for long duration space mission

crewmen. Identify technology advancements necessary to improve weight,
volume and power penalties of washer/dryer concepts that have been

previously suggested because of their potential utility. Formulate a soap

that is completely compatible with man, water processors and personal

hygiene equipment.

* WORKING GROUP MEMBER TO BE CONTACTED FOR FURTHER DISCUSSION:

O.K. Houck, NASA JSC EC2 713-483-4336

R.J. Oillen, NASA JSC EC3 713-483-5536
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